In the 1970s, the world hockey champions had a coach who inspired
them by insisting that they start every match, by imagining they were
0-3 down. “A goal for your weaknesses, another for your opponent’s
strengths and a third for umpiring errors.”
In the past few decades, skepticism about umpiring follies hasn’t
abated. In the world of sports, where stakes are increasing by every
passing minute and an erroneous line-call can mean change of fortunes,
there is an increasing reliance on technology to ensure that all
arbitrations are unbiased. The component of human error in making
judgments of crucial decisions often turns out to be decisive. It is not
uncommon to see matches turning from being interesting to being one
sided due to a couple of bad umpiring decisions. There is thus a need to
bring in technology to try and minimize the chances of human error in
such decision making.

       Teams across the world are becoming more and more professional with
the way they play the game. Teams now have official strategists and
technical support staff which help players to study their past games and
improve. Devising strategies against opponent teams or specific players
is also very common in modern day sports. All this has become possible
due to the advent of technology. Technological developments have been
harnessed to collect various data very precisely and use it for various
      The HawkEye is one such technology which is considered to be really
top notch in sports. The basic idea is to monitor the trajectory of the
ball during the entire duration of play. This data is then processed to
produce life like visualizations showing the paths which the ball took.
Such data has been used for various purposes, popular uses including
the LBW decision making software and colorful wagon wheels showing
various statistics. The HAWKEYE is one of the most commonly used
technologies in the game of cricket today. It has been put to a variety
of uses, such as providing a way to collect interesting statistics,
generate very suggestive visual representations of the game play and
even helping viewers to better understand the umpiring decisions,
especially in the case of LBWs.

Why Hawk-Eye?

Hawk-Eye is the most sophisticated officiating tool used in any
sport. It is accurate, reliable and practical: fans now expect and
demand it to be a part of every event. Hawk-Eye first made its name in
Cricket broadcasting, yet the brand has diversified into Tennis, Snooker
and Coaching. Hawk-Eye is currently developing a system for Football.
In Tennis the technology is an integral part of the ATP, WTA and ITF
tennis tours, featuring at the Masters Cup in Shanghai, the US Open, and
the Australian Open etc. Hawk-Eye is the only ball-tracking device to
have passed stringent ITF testing measures. Hawk-Eye offers a unique
blend of innovation, experience and accuracy that has revolutionized the
sporting world. The system is the most technologically advanced cricket
coaching system in the world. It will provide valuable information to
players, coaches and umpires to enable them to identify faults, measure
performance and improvement, focus on specific areas, improve tactical
awareness and provide a level of realism never before achieved in a net

Hawk eye technology since from its beginning has gained huge
popularity due to its highly innovative and state of the art features.
Though initially it was made for the benefit of umpires regarding
decisions in cricket but now it is being used in tennis, snooker, video
games and also for enhancing military strength. While the system
provides for things which we see every day on television, there is very
impressive technology going into it, which many of us are oblivious to.

All Hawk-Eye systems are based on the principles of triangulation
using the visual images and timing data provided by at least four
high-speed video cameras located at different locations and angles
around the area of play. The system rapidly processes the video feeds by
a high-speed video processor and ball tracker. A data store contains a
predefined model of the playing area and includes data on the rules of
the game. In each frame sent from each camera, the system identifies the
group of pixels which corresponds to the image of the ball. It then
calculates for each frame the 3D position of the ball by comparing its
position on at least two of the physically separate cameras at the same
instant in time. A succession of frames builds up a record of the path
along which the ball has travelled. It also “predicts” the future flight
path of the ball and where it will interact with any of the playing
area features already programmed into the database. The system can also
interpret these interactions to decide infringements of the rules of the
game. The system generates a graphic image of the ball path and playing
area, which means that information can be provided to judges,
television viewers or coaching staff in near real time

Principle of hawk eye:

A hawk Eye system is based on the principle of ‘triangulation’ in
geometry. Triangulation is the process of determining the location of a
point by measuring angles to it from known points at either end of a
fixed base line. Triangulation is the process of finding coordinates and
distance to a point by calculating the length of one side of a
triangle, given measurements of angles and sides of the triangle formed
by that point and two other known reference points, using the law of


The coordinates and distance to a point can be found by calculating
the length of one side of a triangle, given measurements of angles and
sides of the triangle formed by that point and two other known reference
points. The formulas can be applied in flat or Euclidean geometry.

Step-by-step details of the HAWKEYE system:

In this section, we go into the technical details of the steps
involved in the HAWKEYE system. The process, as done before, can be
broken down into the following steps (we will mainly concentrate on
working of Hack-Eye in a cricket field);

1. The cameras: 

Typically, for a cricket field, 6 cameras are used. These cameras
are placed around the field at roughly the places as indicated in the
diagram below:

Fig: The position of cameras around the field

As one can see, the 6 cameras in use are positioned at roughly
sixty degree from each other. They are placed high in the stands, so
that there is lesser chance of their view being blocked by the fielders.
There are two cameras, one each looking at the wickets directly in
sideways fashion. These 6 cameras are calibrated according to the
distance they are at from the pitch. In order to get good accuracy, one
needs to restrict the view of each camera to a smaller region. This
means each camera image would show a more prominent picture of the ball
and hence the ball will be located more accurately. However, we also
need to keep in mind that the whole field of play has to be covered by
just the 6 cameras which are available. This puts some limitation on how
restricted the view of a camera can be. Nevertheless, the accuracy
obtained by using 6 cameras is acceptable to the standards prevalent


1) Video Processor Systems for Ball Tracking in Ball Games.
2) www.hawkeyeinnovations.co.uk
3) www.wikipedia.org
4) www.therulesofcricket.co.uk